
Braves vs Mets Prediction, Picks & Odds for Today’s MLB Game
#Team | ERA | OBP | OPS | SO |
---|---|---|---|---|
1
|
3.21 | .313 | .661 | 715 |
2
|
3.25 | .287 | .635 | 631 |
3
|
3.40 | .289 | .655 | 798 |
4
|
3.41 | .301 | .678 | 658 |
5
|
3.42 | .306 | .670 | 696 |
#Team | W/L | $ | HM $ | AW $ |
---|---|---|---|---|
1
|
40-40 | 1159 | 174 | 985 |
2
|
46-35 | 1032 | -51 | 1083 |
3
|
51-31 | 875 | 671 | 204 |
4
|
48-33 | 860 | 1173 | -313 |
5
|
45-36 | 618 | 517 | 101 |
#Player | AVG |
---|---|
1 Aaron Judge | .361 |
2 Jacob Wilson | .345 |
3 Jonathan Aranda | .329 |
4 Will Smith | .325 |
5 Jeremy Pena | .324 |
#Player | HR |
---|---|
1 Cal Raleigh | 32 |
2 Shohei Ohtani | 28 |
3 Aaron Judge | 28 |
4 Eugenio Suarez | 25 |
5 Kyle Schwarber | 24 |
#Player | RBI |
---|---|
1 Cal Raleigh | 69 |
2 Eugenio Suarez | 67 |
3 Seiya Suzuki | 67 |
4 Pete Alonso | 65 |
5 James Wood | 63 |
#Player | R |
---|---|
1 Shohei Ohtani | 80 |
2 Aaron Judge | 70 |
3 Elly De La Cruz | 64 |
4 Juan Soto | 60 |
5 Pete Crow-Armstrong | 59 |
#Name | Team | W/L | $ |
---|---|---|---|
1 Robbie Ray | SF | 13-3 | 843 |
2 Jackson Jobe | DET | 9-1 | 826 |
3 Shane Baz | TB | 12-4 | 778 |
4 Cal Quantrill | MIA | 8-7 | 726 |
5 Andrew Abbott | CIN | 10-3 | 715 |
#Name | Team | O/U | % |
---|---|---|---|
1 Sonny Gray | STL | 11-4 | 73.3 |
2 Luis Severino | ATH | 11-5 | 68.8 |
3 Kevin Gausman | TOR | 11-5 | 68.8 |
4 Yusei Kikuchi | LAA | 11-6 | 64.7 |
5 Gavin Williams | CLE | 10-5 | 66.7 |
#Player | Wins |
---|---|
1 Max Fried | 10 |
2 Carlos Rodon | 9 |
3 Tarik Skubal | 9 |
4 Brandon Pfaadt | 8 |
5 Robbie Ray | 8 |
#Player | ERA |
---|---|
1 Hunter Brown | 1.74 |
2 Max Fried | 1.92 |
3 Garrett Crochet | 2.06 |
4 Jacob deGrom | 2.08 |
5 Paul Skenes | 2.12 |
#Player | SV |
---|---|
1 Robert Suarez | 22 |
2 Carlos Estevez | 22 |
3 Josh Hader | 21 |
4 Kyle Finnegan | 18 |
5 Trevor Megill | 18 |
#Player | SO |
---|---|
1 Garrett Crochet | 135 |
2 MacKenzie Gore | 129 |
3 Zack Wheeler | 126 |
4 Tarik Skubal | 125 |
5 Logan Webb | 120 |
#Name | W/L | % | $ |
---|---|---|---|
1 Paul Clemons | 13-2 | 86.7 | 940 |
2 Nestor Ceja | 13-3 | 81.2 | 895 |
3 Stu Scheurwater | 12-3 | 80.0 | 467 |
4 Tripp Gibson | 11-3 | 78.6 | 790 |
5 CB Bucknor | 11-3 | 78.6 | 557 |
#Name | O/U | % | AVG |
---|---|---|---|
1 Tom Hanahan | 12-4 | 75.0 | 10.8 |
2 Lance Barrett | 11-3 | 78.6 | 10.7 |
3 Clint Vondrak | 10-5 | 66.7 | 12.1 |
4 Shane Livensparger | 10-5 | 66.7 | 9.5 |
5 Chris Conroy | 10-6 | 62.5 | 10.4 |
#Team | ERA | OBP | OPS | SO |
---|---|---|---|---|
1
|
3.25 | .287 | .635 | 631 |
2
|
3.40 | .289 | .655 | 798 |
3
|
3.41 | .301 | .678 | 658 |
4
|
3.46 | .301 | .675 | 689 |
5
|
3.47 | .293 | .648 | 737 |
#Team | W/L | $ | HM $ | AW $ |
---|---|---|---|---|
1
|
40-40 | 1159 | 174 | 985 |
2
|
46-35 | 1032 | -51 | 1083 |
3
|
51-31 | 875 | 671 | 204 |
4
|
48-33 | 860 | 1173 | -313 |
5
|
43-37 | 452 | 425 | 27 |
#Player | AVG |
---|---|
1 Aaron Judge | .361 |
2 Jacob Wilson | .345 |
3 Jonathan Aranda | .329 |
4 Jeremy Pena | .324 |
5 Jose Ramirez | .317 |
#Player | HR |
---|---|
1 Cal Raleigh | 32 |
2 Aaron Judge | 28 |
3 Junior Caminero | 20 |
4 Taylor Ward | 19 |
5 Jo Adell | 17 |
#Player | RBI |
---|---|
1 Cal Raleigh | 69 |
2 Aaron Judge | 63 |
3 Riley Greene | 61 |
4 Taylor Ward | 53 |
5 Junior Caminero | 51 |
#Player | R |
---|---|
1 Aaron Judge | 70 |
2 Cal Raleigh | 58 |
3 Brent Rooker | 50 |
4 Byron Buxton | 49 |
5 Julio Rodriguez | 48 |
#Name | Team | W/L | $ |
---|---|---|---|
1 Jackson Jobe | DET | 9-1 | 826 |
2 Shane Baz | TB | 12-4 | 778 |
3 Ben Lively | CLE | 7-2 | 574 |
4 Hunter Dobbins | BOS | 7-3 | 503 |
5 Tyler Anderson | LAA | 9-6 | 491 |
#Name | Team | O/U | % |
---|---|---|---|
1 Luis Severino | ATH | 11-5 | 68.8 |
2 Kevin Gausman | TOR | 11-5 | 68.8 |
3 Yusei Kikuchi | LAA | 11-6 | 64.7 |
4 Gavin Williams | CLE | 10-5 | 66.7 |
5 Taj Bradley | TB | 9-5 | 64.3 |
#Player | Wins |
---|---|
1 Max Fried | 10 |
2 Carlos Rodon | 9 |
3 Tarik Skubal | 9 |
4 Jacob deGrom | 8 |
5 Framber Valdez | 8 |
#Player | ERA |
---|---|
1 Hunter Brown | 1.74 |
2 Max Fried | 1.92 |
3 Garrett Crochet | 2.06 |
4 Jacob deGrom | 2.08 |
5 Kris Bubic | 2.18 |
#Player | SV |
---|---|
1 Carlos Estevez | 22 |
2 Josh Hader | 21 |
3 Andres Munoz | 18 |
4 Emmanuel Clase | 18 |
5 Jeff Hoffman | 17 |
#Player | SO |
---|---|
1 Garrett Crochet | 135 |
2 Tarik Skubal | 125 |
3 Carlos Rodon | 119 |
4 Hunter Brown | 118 |
5 Max Fried | 104 |
#Name | W/L | % | $ |
---|---|---|---|
1 Nestor Ceja | 10-0 | 100.0 | 887 |
2 Paul Clemons | 8-1 | 88.9 | 748 |
3 Marvin Hudson | 8-2 | 80.0 | 646 |
4 Quinn Wolcott | 8-3 | 72.7 | 649 |
5 Doug Eddings | 7-2 | 77.8 | 585 |
#Name | O/U | % | AVG |
---|---|---|---|
1 Quinn Wolcott | 7-4 | 63.6 | 9.9 |
2 Tom Hanahan | 6-1 | 85.7 | 11.7 |
3 Edwin Moscoso | 6-1 | 85.7 | 10.1 |
4 Lance Barksdale | 6-2 | 75.0 | 11.2 |
5 Brian Walsh | 6-3 | 66.7 | 11.1 |
#Team | ERA | OBP | OPS | SO |
---|---|---|---|---|
1
|
3.21 | .313 | .661 | 715 |
2
|
3.42 | .306 | .670 | 696 |
3
|
3.59 | .302 | .666 | 697 |
4
|
3.71 | .306 | .691 | 724 |
5
|
3.82 | .316 | .701 | 681 |
#Team | W/L | $ | HM $ | AW $ |
---|---|---|---|---|
1
|
45-36 | 618 | 517 | 101 |
2
|
44-36 | 541 | 438 | 103 |
3
|
44-38 | 536 | 764 | -228 |
4
|
42-39 | 404 | 195 | 209 |
5
|
48-33 | 373 | 3 | 370 |
#Player | AVG |
---|---|
1 Will Smith | .325 |
2 Freddie Freeman | .309 |
3 Josh Naylor | .307 |
4 Brendan Donovan | .301 |
5 Manny Machado | .298 |
#Player | HR |
---|---|
1 Shohei Ohtani | 28 |
2 Eugenio Suarez | 25 |
3 Kyle Schwarber | 24 |
4 James Wood | 22 |
5 Pete Crow-Armstrong | 21 |
#Player | RBI |
---|---|
1 Eugenio Suarez | 67 |
2 Seiya Suzuki | 67 |
3 Pete Alonso | 65 |
4 James Wood | 63 |
5 Pete Crow-Armstrong | 61 |
#Player | R |
---|---|
1 Shohei Ohtani | 80 |
2 Elly De La Cruz | 64 |
3 Juan Soto | 60 |
4 Pete Crow-Armstrong | 59 |
5 Corbin Carroll | 57 |
#Name | Team | W/L | $ |
---|---|---|---|
1 Robbie Ray | SF | 13-3 | 843 |
2 Cal Quantrill | MIA | 8-7 | 726 |
3 Andrew Abbott | CIN | 10-3 | 715 |
4 Griffin Canning | NYM | 12-4 | 695 |
5 Sonny Gray | STL | 12-3 | 595 |
#Name | Team | O/U | % |
---|---|---|---|
1 Sonny Gray | STL | 11-4 | 73.3 |
2 Spencer Schwellenbach | ATL | 10-5 | 66.7 |
3 German Marquez | COL | 10-6 | 62.5 |
4 Eduardo Rodriguez | AZ | 9-4 | 69.2 |
5 Tylor Megill | NYM | 9-5 | 64.3 |
#Player | Wins |
---|---|
1 Brandon Pfaadt | 8 |
2 Robbie Ray | 8 |
3 Nick Pivetta | 8 |
4 Clay Holmes | 8 |
5 Freddy Peralta | 8 |
#Player | ERA |
---|---|
1 Paul Skenes | 2.12 |
2 Logan Webb | 2.52 |
3 Chris Sale | 2.52 |
4 Zack Wheeler | 2.55 |
5 Yoshinobu Yamamoto | 2.61 |
#Player | SV |
---|---|
1 Robert Suarez | 22 |
2 Kyle Finnegan | 18 |
3 Trevor Megill | 18 |
4 Emilio Pagan | 18 |
5 Tanner Scott | 17 |
#Player | SO |
---|---|
1 MacKenzie Gore | 129 |
2 Zack Wheeler | 126 |
3 Logan Webb | 120 |
4 Chris Sale | 114 |
5 Paul Skenes | 110 |
#Name | W/L | % | $ |
---|---|---|---|
1 Stu Scheurwater | 9-1 | 90.0 | 577 |
2 John Tumpane | 9-2 | 81.8 | 657 |
3 Charlie Ramos | 8-2 | 80.0 | 628 |
4 CB Bucknor | 6-1 | 85.7 | 493 |
5 Gabe Morales | 6-2 | 75.0 | 497 |
#Name | O/U | % | AVG |
---|---|---|---|
1 Clint Vondrak | 8-4 | 66.7 | 12.5 |
2 Lance Barrett | 6-1 | 85.7 | 12.0 |
3 Bill Miller | 6-2 | 75.0 | 10.8 |
4 Chris Guccione | 6-3 | 66.7 | 10.0 |
5 Tom Hanahan | 6-3 | 66.7 | 10.0 |
MLB betting stats offer deep insights into how teams perform not just on the diamond β but in relation to oddsmakersβ expectations. With a 162-game season and daily betting opportunities, knowing how to use metrics like ATS, O/U, and situational splits can be the difference between blind betting and sharp strategy.
Hereβs a breakdown of the key stats on this page and how to use them for more profitable baseball betting.
What it means: In MLB, ATS typically refers to runline betting β where a team must win by 2+ runs (β1.5) or lose/win by fewer than 2 runs (+1.5).
How to use it: A team like the Rays could be 60-45 ATS, indicating theyβve consistently beaten the runline. Underdogs that win outright or keep games close often offer ATS value.
π Runline stats are essential when deciding whether to bet a favorite straight up or lay the β1.5.
π Use the latest MLB odds to compare runline prices and spot market inefficiencies.
What it means: Tracks how often games go Over or Under the posted total runs.
How to use it: Team tendencies β like high-powered lineups or unreliable bullpens β directly influence totals. If the Rockies are 68-40 to the Over, it often signals offensive firepower or Coors Field factor.
π Factor in ballpark effects, pitching matchups, and weather when betting totals.
π Learn more with our MLB betting guide.
What it means: Outright win-loss records.
How to use it: Great for evaluating moneyline betting opportunities. Teams might be profitable SU without being elite β especially with plus-money value. For example, the Orioles may be 55-50 SU but +10 units due to frequent underdog wins.
π Use SU stats alongside profit/loss metrics to gauge value beyond win totals.
What it means: Tracks performance based on location.
How to use it: Some teams dominate at home but collapse on the road. If the Padres are 35-20 ATS at home but 20-40 away, location should strongly influence your wager.
π Ballpark familiarity, travel, and lineup depth often shift performance drastically between venues.
What it means: Shows how teams fare against divisional or league opponents.
How to use it: Divisional matchups are common and often tight. A team with a strong ATS record vs. its division may be particularly effective at exploiting familiar opponents.
π Use this when betting series between rivals or when playoff races heat up late in the season.
Betting on baseball becomes more rewarding when you pair your insights with the best promo codes. Bonuses can help smooth out cold streaks and capitalize on your winning reads.
βΎ Start with the Best MLB Betting Sites to find top sportsbooks and features.
π Score the latest sportsbook promos to boost your bankroll with welcome offers and ongoing promos.
Baseball is a grind β but with the right stats and bonus strategy, your bets can go the distance.